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1. Introduction

U.S. Army Training and Doctrine Command (TRADOC) 

Pamphlet 525-66 identifies Force Operating Capabilities 

required for the Army to fulfill its mission for a networked 

Warfighter concept. Two such capabilities are Battle Com-

mand and Battle-Space Awareness for which there are 

expectations that networked teams will perform in a reliable 

manner under changing mission requirements and changing 

team and individual objectives. These capabilities are neces-

sary in the asymmetric battles waged against insurgencies, 

where enemy combatants quickly adapt to Army strategies 

and tactics.1 This need is compounded by the fact that insur-

gents have increasingly become more difficult to detect due 

to their knowledge of the local terrain and their ability to 

mix with civilian populations. Over time, the needs of sol-

diers change in response to new insurgent strategies, quickly 

making existing technologies and systems obsolete. Since 

the Department of Defense currently does not have plans for 

fleet-wide upgrades for robots,2,3 real-time adaptive team 

responses to insurgent threats are clearly key to mitigate the 

risk in uncertain and dynamic battle-spaces.

Battlefield or disaster area teams may be heterogeneous 

networks consisting of interacting humans, ground sensors, 

and unmanned airborne or ground vehicles (UAV, UGV). 

Such scenarios should provide real-time learning of opti-

mal game strategies under changing mission requirements 

and team objectives. This requires adaptive algorithms for 

online learning of optimal solutions to multi-player games 

that facilitate keeping strategies updated as team and player 
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objective functions change. Current methods of solving for 

optimal game strategies require offline solution of coupled 

matrix equations, which does not allow for straightforward 

updating of decision policies when objectives change. 

Required are deployable dynamic learning algorithms for 

keeping decision policies current to support mission tailor-

ing, force responsiveness and agility, ability to change 

missions without exchanging forces, general adaptability to 

changing battlefield conditions, and defense against ballis-

tic missile attack.4

This paper has two parts. First, it presents an overall view 

of team behaviors and dynamical decision-making in teams, 

both cooperative and competitive. In the second part, we 

show how to learn optimal game strategies online in real-

time by observing data along the system trajectories as 

players interact with each other in cooperative or competitive 

play. In the first part we discuss cooperation, collaboration, 

altruistic vs. selfish behavior, antagonism, competition, 

incentives, minimum risk, cheating, and other concepts of 

multi-player team play. These concepts and others are rather 

easy to define clearly in terms of different objective/payoff 

functions, and/or different optimality criteria.

Strategies for team decision problems, including opti-

mal control, N-player games (non- zero sum, zero sum) and 

so on are normally solved offline by solving the coupled 

Hamilton–Jacobi (HJ) equations for non-linear systems or 

coupled Riccati equations for linear systems. However, 

using that approach, players cannot change their objectives 

online in real time without calling for a completely new 

offline solution for the new strategies. Therefore, in the 

second part of this paper methods are given for solving 

different team decision problems online in real time by 

observing data along the system trajectories. This provides 

a truly dynamic framework for team decision-making, 

since players or teams can change their objectives or opti-

mality criteria on the fly, and the new strategies for all 

players appropriate to the new situation can be re-computed 

in real time. This approach also allows for time-varying 

team dynamics.

The interplay between protagonists and opponents in 

team play is complex. Often, one’s play is improved if one 

has to face an adversary. Our definitions of team behaviors 

in the first part of the paper were inspired by the summary 

of Chandler et al.1 The discussions on dynamical games are 

based on Basar and Olsder.5 A survey of reinforcement 

learning (RL) techniques for solving multi-player games is 

presented in an award winning paper by Busoniu et al.6

The approach given in the second part of the paper for 

online learning of optimal game solutions is based on con-

cepts from RL.7,8 Every living organism interacts with its 

environment and uses those interactions to improve its own 

actions in order to survive and increase. Charles Darwin 

showed that species modify their actions based on interac-

tions with the environment over long time scales, leading to 

natural selection and survival of the fittest. RL refers to an 

actor or agent that interacts with its environment and modi-

fies its actions, or control policies, based on stimuli received 

in response to its actions. RL implies goal directed behavior 

at least insofar as the agent has an understanding of reward 

versus lack of reward or punishment. Using a form of RL 

known as policy iteration,8 we develop an algorithm for 

online learning of the solution to the N-player (zero-sum, 

non-zero-sum) game problem. In this algorithm, the optimal 

value of the game and the Nash equilibrium solution are 

learned in real-time as the players play together in a dynami-

cal system scenario. The non-linear system case is presented. 

In the linear quadratic regulator special case, the algorithm 

learns the solution to coupled Riccati equations online, with-

out ever actually solving the coupled Riccati equations.

Simulation examples show that the team learns the cor-

rect Nash equilibrium solution.

2. Different objectives and the behaviors 

of teams

The framework for team behaviors which we present in this 

paper can be applied for general non-linear multi-player 

dynamical systems, in continuous time or discrete time. We 

specialize to the linear time-invariant (LTI) continuous-

time dynamical systems simply for ease of discussion. 

Therefore, consider the continuous-time LTI dynamical 

system given by

 xx A B u B u1 2 2 = + +  (1)

with state ( )x t R
n

  and two control inputs or players 

( ) , ( )u t R u t R1 2
m m1 2

  . The players may be cooperating or 

competing. 

Define objective functions for players 1 and 2 respec-

tively as
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(3)

These are infinite horizon performances-to-go starting at 

time t in state x(t). They capture information equivalent to 

the payoff matrices of static games.5

In this paper one considers problems of minimizing the 

objective functions. That is, the objectives are considered 

as costs to be made small by proper selection of the players’ 

strategies.
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The integrands L
i
(x, u

1
, u

2
) are defined point wise at a 

time t in terms of weighting matrices Q and R and are 

known (loosely) as Lagrangians, or as utility functions. 

They are selected by the players or a higher-level authority 

depending on the performance requirements of the system. 

Interpreting the control inputs as feedback control strate-

gies u
1
(x), u

2
(x), also called policies, that depend on the 

current system state x(t), then J
1
(x(t), u

1
(x), u

2
(x)), J

2 
(x(t), 

u
1
(x), u

2
(x)) represent the costs to players 1 and 2 respec-

tively of motion along the system trajectories given the 

current strategies starting at time t in state x(t). A variety of 

team decision problems and team behaviors can be defined 

through the choice of the objective functions.

2.1 Team coordination

We follow fairly closely the nice list of definitions1 in discuss-

ing different sorts of team behaviors. Coordination is the 

closest and most cohesive form of cooperation in teams. There, 

all team members share a common objective function. That is,
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All players have the same optimality criteria, namely to 

minimize the objective function. This is exactly the standard 

optimal control problem.9 Military vehicle formations and 

convoys represent scenarios where all team members are 

obligated to participate and are bound to all assignments, 

tasks, or agreements.

The solution to this problem is given by solving the 

algebraic Riccati equation (ARE)

 0 = ATP + PA + Q – PB
1
R

11
–1B

1
TP – PB

2
R

12
–1B

2
TP  (5)

and the feedback control policies are given by

 u
1
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11
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The Riccati equation solution must be performed offline a 

priori, and it defines the feedback policies for all time. 

Unfortunately, this rules out the possibility of truly dynamic 

team behavior since the utility function weighting matrices 

cannot be changed on the fly in real time. We show how to 

fix this in Section 4 through online learning of the optimal 

strategies.

2.2 Team cooperation and collaboration

Cooperation is a looser form of team cohesiveness whereby 

each player can have its own objective function, as given 

in (2) and (3), in addition to team objective functions. If 

each player seeks to minimize their own cost function, the 

solution to this optimal control problem is given5 in terms 

of the two coupled AREs

 0 = A
c
TP

1
 + P

1
A

c
 + Q

1
 + P

1
B

1
R

11
–1B

1
TP

1
 +

 P
1
B

2
R

22
–1R

12
R

22
–1B

2
TP

1
 (7)

 0 = A
c
TP

2
 + P

2
A

c
 + Q

2
 + P

2
B

1
R

11
–1R

21
R

11
–1B

1
TP

2
 +

 P
2
B

2
R

22
–1B

2
TP

2
 (8)

where the closed-loop system matrix is

 A
c
 = A – B

1
K

1
 – B

2
K

2
 (9)

and the optimal feedback policies are given by
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1
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1
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Collaboration is a still looser form of team behavior 

whereby each player seeks to optimize their objective func-

tion without compromising team task completion. The 

spectrum between coordination, cooperation, and collabo-

ration is a continuum that depends on the closeness of the 

objective functions of individual players. For example, the 

behavior of an Army medic and a wounded Soldier can be 

modeled by cooperative solutions, since both have different 

private objective functions, but share a team objective to 

move to a safe zone. A Predator drone, on the other hand, is 

more likely to exhibit collaborative behaviors for intelli-

gence, surveillance, and reconnaissance (ISR), as long as it 

has enough fuel to fly.

To reflect the greater cohesiveness in cooperation than 

in collaboration, Chandler et al.1 suggest defining a team 

objective function J
team

(x(t), u
1
, u

2
) and then setting
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where J
1p

, J
2p

 are private objectives for each player and 

w
1
,w

2
 are weightings selected to put more or less emphasis 

on team objectives as compared with private objectives.

2.3 Competition and conflict: zero-sum games

The resources available for survival or operation are often 

limited. Different players or different teams may compete 

against each other for the same limited resources, such as 

bandwidth on communication networks or natural resources 
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such as land. The extreme case of competitive behavior is 

when
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That is, when one player wins, the other loses by the same 

amount. This is the standard two-player zero-sum game.5,10 

If both players seek to minimize their respective costs, the 

optimal solution is given by the solution to the game (or 

generalized) ARE

 0 = ATP + PA + Q – PB
1
R

11
–1B

1
TP + PB

2
R

12
–1B

2
TP (14)

with the optimal feedback strategies given by

 u
1
 = –K

1
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11
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2
= K

2
x "#R

12
–1B

2
TPx (15)

The solution to the two-player zero-sum game also pro-

vides the solution to the bounded L
2
-gain problem, wherein 

the control input u
1
(t) seeks to guarantee bounds on the 

output in the face of a system disturbance given by u
2
(t). In 

this context one selects R
12

 = γ2 for a fixed scalar γ#>#0 and 

the guaranteed bound is given in terms of L
2
 function 

norms as

 z u2" c , z
Q x

R u11 1

= = G (16)

with z(t) the performance output. Under reachability and 

observability conditions this solution exists and is unique 

for large enough γ#>#0.

2.4 Decomposition of objective functions into team 

goals plus conflict of interest goals

The objective functions of each player can be written as a 

team average term plus a conflict of interest term.

For the case of two players one has

 –( ) ( )J J J J J J J1 2
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1 2
1
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For three players
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For N players one may write
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i N j
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For N-player zero-sum games, the first term is zero, i.e. the 

players have no goals in common. The case of zero-sum 

multi-player games in a competition mode is discussed by 

Busoniu et al.6

3. Different optimality criteria and the 

behaviors of teams

The behaviors of teams and individual players change 

depending on the selection of the objective functions. Given 

the multi-player games just described, one can have further 

differing team behaviors depending on the prescribed opti-

mality criteria, and also on the definition of equilibrium 

point.

3.1 Nash Equilibria and Myopic Self-Improvement

Let each player seek to minimize their own objective func-

tion. The Nash equilibrium policy5 ( , )u u1
*

2
*  for a two-player 

game is defined by the conditions

 ( , , ) ( , , )J x u u J x u u1 1
*

2
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1 1 2
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*

2
*
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This means that if either player changes their own strategy 

while the other does not, they do worse in terms of having 

an increased cost. Nash equilibria are stable in the sense that 

a single player cannot improve their performance by unilat-

eral actions. Each player considers only their own selfish 

cost. Under certain standard conditions,5 Nash equilibria 

exist and are unique.

In the context of two-player zero-sum games, the optimality 

criterion can be expressed as
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u u
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  (24)

whereby player 1 seeks to minimize the objective function 

while player 2 seeks to maximize it. Then the Nash condition 

can be written as

 ( , ) ( , , ) ( , , ),J x u J x u u J x u uu1 1
*

2 1 1
*

2
*

1 1 2
*

" "  (25)

3.2 Pareto equilibria, agreements, and cheating

A different sort of optimality criterion is defined by the 

Pareto equilibrium, which for two players satisfies the 

conditions

if <( , , ) ( , , )J x u u J x u u1 1 2 1 1
*

2
*$ , then <( , , ) ( , , )J x u u J x u u2 1

*
2
*

2 1 2
*

if <( , , ) ( , , )J x u u J x u u2 1
*

2 2 1
*

2
* ,

then <( , , ) ( , , )J x u u J x u u1 11
*

2
*

1
*

2  (26)
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This means that if either player adopts a strategy other than 

the equilibrium, either they will incur increased costs or 

other players will. This is an altruistic sense of equilibrium 

wherein all players seek to help team members improve 

their performance. This particular optimality criterion aligns 

well to the Army Core Values of loyalty and self-service.

Pareto equilibria are not necessarily unique. To obtain a 

unique equilibrium, additional side agreements are needed 

between the players. Moreover, Pareto equilibria require 

cooperation between players and an agreement that none 

will act so as to harm another. Pareto performance is sub-

ject to cheating, defined as a situation where at least one 

player does not follow the agreed-upon rules. By cheating, 

a single player may be able to improve their performance at 

the expense of their team mates.

3.3 Antagonistic behavior

Another sort of equilibrium is defined by the conditions

 ( , , ) ( , , )J x u u J x u u2 1
*

2
*

2 1 2
*

$

 ( , , ) ( , , )J x u u J x u u1 1
*

2
*

1 1
*

2$  (27)

This means that if player 1 diverges from the equilibrium 

policy, then player 2 will have an improved payoff in terms 

of decreased costs, and vice versa. That is, each player is 

interested in harming the other as much as possible. This is 

a definition of antagonistic behavior. The uniqueness of 

such equilibria needs to be established.

3.4 Leader–follower games and team incentives

Consider the case of two players and define the equilibrium 

solution as

 ( , , ) ( , , )J x u u J x u u2 1 2
*

2 1 2"  for a fixed policy u
1
(x)

 ( , , ) ( , , )J x u u J x u u1 1
*

2
*

1 1 2
*

"  (28)

This is a hierarchical decision problem in which player 1 

acts as the leader and player 2 as the follower. The objective 

of lead player 1 is to determine an incentive, through selec-

tion of their policy u
1
(x), so that the follower will always 

play so as to minimize the leader’s cost while seeking to 

minimize their own. This is known as a Stackelberg game.

In the case of three or more players, one can have several 

definitions of equilibrium point.5 Consider the definition for 

three players given by

 ( , , , ) ( , , , )J x u u u J x u u u2 1 2
*

3
*

2 1 2 3
*

"  for a fixed policy u
1
(x) (29)

 ( , , , ) ( , , , )J x u u u J x u u u3 1 2
*

3
*

3 1 2
*

3"  for a fixed policy u
1
(x) (30)

 ( , , , ) ( , , , )J x u u u J x u u u1 1
*

2
*

3
*

3 1 2
*

3
*

"  (31)

In this situation, players 2 and 3 are followers who adopt a 

Nash equilibrium with regards to each other in the follow-

ers subgame for each policy of the leader. The objective of 

lead player 1 is to determine an incentive so that the follow-

ers will always act to minimize their cost while seeking to 

minimize its own.

Stackelberg strategies have been explored in the con-

text of international terrorism11 and show their obvious 

implications within existing government/military lead-

ership hierarchies. John Keegan, who wrote a history 

of men at war in The Face of Battle, talks about how

‘the personal bond between leader and follower lies at 

the root of all explanations of what does and does not 

happen in battle’. This quote eloquently describes how 

the incentive for soldiers to follow orders from their 

superiors can seriously affect both soldier morale and 

wartime outcomes.

4. Online learning of optimal team 

strategies

It has been shown6 in cooperative games that the agents use 

the same objective function and they use greedy policies to 

maximize their common return. Furthermore a variety of 

team and individual player strategies can be defined by 

suitable selection of payoff objective functions and suitable 

definitions of optimality. Normal approaches to solving for 

optimal strategies for team decision problems involve 

offline solution, such as the coupled Riccati equations. 

However, using that approach, players cannot change their 

objectives online in real time without calling for a com-

pletely new offline solution for the new strategies. In this 

section we show how to compute optimal team strategies 

online in real time by learning based on observed data 

along the system trajectories. This provides a truly dynamic 

framework for team decision making, since players or 

teams can change their objectives or optimality criteria on 

the fly, and the new strategies for all players appropriate to 

the new situation are then re-computed in real time. This 

online gaming approach also allows for time-varying team 

dynamics.

This learning approach is based on RL techniques.7,8 A 

survey on multi-agent RL is presented by Busoniu et al.6 It 

is a general method for solving optimal decision problems 

for general non-linear dynamical systems, and will be illus-

trated for the non-linear two-player game solution (zero-sum 

or non-zero sum).

4.1 N-player non-linear games

Consider the N-player non-linear time-invariant differential 

game on an infinite time horizon

 ( ) ( )x f x g x u
1

j j

j

N

= +
=

 "  (32)
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where state x(t)$Rn, controls ( )u t Rj
m j

 . Assume that f(x) 

is continuously differentiable and f(0) = 0 so that x = 0 is an 

equilibrium point of the system. The cost functionals asso-

ciated with each player are2

 

( ( )Q x( ( ), , , ) )

( ( ), , , ) ;

J x u u u u R u dt

r x t u u u dt

0 1 2
T

10

1 2

0

i N i i ij i

j

i N

 

f

f 

= +

3

3

=

/#

#

 i  !N (33)

where function Q
i
(x) "!0 is generally non-linear, and R

ii
 > 0, 

R
ij
 > 0 are symmetric matrices.

Given admissible feedback policies/strategies u
i
(t) = 

µi(x) the value is

 

) d( ( ), , , ) ( ( )

( ( ), , , ) ;

V x Q x R

r x t d i N

0 1 2
T

1

1 2

i N i i ij i

j

N

t

i N

t

f

f/ !

n n n n n x

n n n x

= +

3

3

=

/#

#
 (34)

Define the N-player game ( ( ), , , )V x t
*

1 2i N n n n = 

min ( ( ) ) ;Q x R d i NT

1

i i ij i

j

N

t
i

"n n x+

!

=
n

/#  (35)

By assuming that all of the players have the same hierar-

chical level, we focus on the so-called Nash equilibrium 

that is given by the following definition.

Definition 1. (Nash equilibrium strategies, Başar and Olsder5) 

An N-tuple of strategies , , ...,1
*

2
*  n n nM" , *

i i"n X , i  !N with 
*
i i"n X , i  !N is said to constitute a Nash equilibrium solu-

tion for an N-player finite game in extensive form, if the 

following N inequalities are satisfied for all *
i i"n X , i  !N:

 

( , , ..., ) ( , , ..., )

( , , ..., ) ( , , ..., )

...

...

( , , ..., ) ( , , ..., )

J J J

J J J

J J J

1 1 1
*

2
* *

1 1

2 2 1
*

2
* *

2 1
*

2

1
*

2
* *

1 2
*

N N N

* *

*

2_ #

_ #

_ #

n n n n n n

n n n n n n

n n n n n n

M M

M M

M M

*

*

*

_

`

a

b
bb

b
bb

 (36)

The N-tuple of quantities , , ...,J J J1
*

2
* *

M" , is known as a 

Nash equilibrium outcome of the N-player game.

Differential equivalents to each value function are given 

by the following non-linear Lyapunov equations

 
, ,( , ) ( )

( ( ) ( ) ), ( ) ,

r x u u V

f x g x u V i N

0

0 0

1
T

1

N

j j

j

N

i

if d

"

= +

+ =
=

 
 (37)

where V V x Ri i
ni

d 2 2 "=  is the gradient vector (e.g. trans-

posed gradient). Then, suitable non-negative-definite 

solutions to (37) are the values evaluated using the infinite 

integral (35) along the system trajectories. Define the 

Hamiltonian functions

 
, , , ,u( , , ) ( , ) ( )

( ( ) ( ) )

H x V u u r x u V

f x g x u i N

1
T

1

i i 1 N N i

j j

j

N

d f f d

"

= +

+
=

 
 (38)

According to the stationarity conditions, associated 

feedback control policies are given by

 –( ) ( ) ,H
x R g x V i N

u
0 –1 Ti

i ii i i

"
2

1
 

2

2
d "n= =  (39)

Substituting (39) into (37) one obtains the N coupled HJ 

equations

 
–( ) ( ) ( ) ( ) ( )

( ) ( ) , ( )

V f x g x R g x V Q x

V g x R R R g x V V

0

0 0

–

– –

T 1 T

1

T T 1 T

1

i j jj j j

j

N

j j jj ij jj j j

j

N

i

"2

1

4

1

# #

# #

= + +

=

=

=

d n 

 

 (40)

These coupled HJ equations are in ‘closed-loop’ form. 

The equivalent ‘open-loop’ form is

 
–( ) ( ) ( ) ( )

( ) ( ) , ( )

V f x Q x V g x R g x V

V g x R R R g x V V

0

0 0

–

– –

T T 1 T

1

T T 1 T

1

i i i j jj j j

j

N

j j jj ij jj j j

j

N

i

2

1

4

1

# # #

# #

= + +

=

=

=

 

 

 (41)

These equations are difficult to solve. An iterative offline 

solution technique is given by the Policy Iteration algorithm 

in the next section and it is the key to motivate the control 

structure for an online adaptive N-player game solution 

algorithm. Then it is proven that ‘optimal adaptive’ control 

algorithm converges online to the solution of coupled HJs 

(41), while guaranteeing closed-loop stability.

4.2 Solution of the N-player game using 

reinforcement learning

The optimal strategies of the N-player game are given in 

terms of the coupled HJ equations (41). Unfortunately, the 

coupled HJ equations (41) are usually intractable to solve 

directly. In fact, the coupled HJ equations may not have 

exact analytic solutions. One can solve the coupled HJ 

equations iteratively to obtain a suitable local smooth solu-

tion by using one of several algorithms built on techniques 

from RL.8 One method of RL is known as policy iteration. 

The following policy iteration algorithm solves the coupled 

HJ equations by iterative solution of a far simpler equation, 

namely the non-linear Lyapunov-like equations (37).

4.2.1 Policy iteration for N-player games

 Start with stabilizing initial policies µ0
1(x),..., µ0

N(x).

 Given the N-tuple of policies , solve for the N-tuple 

of costs ( ( )), ( ( )) ... ( ( ))V x t V x t V x t1 2
k k k

N  using
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, ,( , ) ( )

( ) ( ) , ( )

r x V

f x g x V i N

0

0 0

1
T

1

k k
N i

k

j j
i

j

N
k
i

f d

"

n n

n

= +

+ =
=

d n 
 (42)

 Update the N-tuple of control policies using

  argmin[ ( , , , , )]H x V u u i N
1

1i

k

u

i i N

( )i

d f "n =
"

+

W X

 (43)

 which explicitly is

  –( ) ( )x R g x V i N–1 1 T
i
k

ii i i
k

2

1
# "n =+  (44)

A linear version of the previous algorithm is presented by 

Gajic and Li12 and Abou-Kandil et al.13

The PI algorithm will be used as the basis for online 

learning solution techniques for optimal game strategies in 

the next section.

4.3 Online gaming solution of the two-player game

The PI Algorithm is a sequential algorithm that solves the 

coupled HJ equations (42) and finds the optimal strategies 

(44) for the game. In this section, we develop an online 
algorithm for learning the solution to the two-player 
differential game in real time. In this algorithm, the two 

players learn simultaneously as they play together in a 

dynamical game. This is in effect an adaptive control algo-

rithm of novel form that converges to the optimal game 

solution. The online gaming algorithm is motivated by the 

PI algorithm. Consider the non-linear dynamical system 

given by

 ẋ = f(x) + g(x)u + k(x)d (45)

with state x(t)  !Rn, first control u(t)  !Rm, and second con-

trol d(t)  !Rq. Assume that f(x) is continuously differentiable 

and f(0) = 0 so that x = 0 is an equilibrium point of the 

system.

The online gaming algorithm is an adaptive learning 

controller that is based on value function approximation 

(VFA).14-16 Motivated by Equations (42) and (43) in the 

PI algorithm, it uses four approximator structures, which 

can be considered as neural networks (NNs). Two NNs 

learn the current values of the game, i.e. the solution of 

the non-linear Lyapunov equations (42) for the current 

control policies. The other two NNs learn the two control 

policies.

That is, one has the estimates of the values, and control 

policies respectively expressed as

 ( ) ( )V x W x1
T

1" z=$ $ , ( ) ( )V x W x2 2
T

2z=$ $  (46)

 –( ) ( )u x R g x W
–

3 11
1 T

1
T

32

1
dz= t   (47)

 –( ) ( )d x R k x W
–

4 22
1 T

2
T

42

1
dz= t   (48)

Here, the weights of the four NNs are Ŵ
1
,Ŵ

2
,Ŵ

3
,Ŵ

4
. 

Exactly as in adaptive control, these are matrices of unknown 

parameters which must be estimated or tuned by online 

learning methods. The NN activation functions are ( )x1z , 

( )x2z  and x1 1d 2 2z z= , x2 2d 2 2z z=  are the Jacobian 

matrices.

This scheme has the so-called actor–critic structure,8,15,16 

whereby the critic NNs (46) seek to learn the values of the 

current policies, e.g. the solution to the non-linear Lyapunov 

equations (42). The actor NNs (47) and (48), on the other 

hand, seek to learn the optimal policies for both players. The 

main theorem is now given. It provides the tuning laws for 

the critic, and control NNs that guarantee convergence of the 

online gaming algorithm in real-time to the Nash equilibrium 

solution, while guaranteeing closed-loop stability.

Theorem 1. (Online games) Let the dynamics for the two-play-

er game be given by (45), and consider the game formulation 

as analyzed in this section. Let the critic NNs be given by (46), 

the first control input be given by actor (first player) NN (47) 

and the second control input be given by actor (second player) 

NN (48). Let tuning for the first critic NN be provided by

 –
( )

[ ( ) ]W a W Q x u R u d R d
1

1 1

3
T

3
2

3
3
T

1 1 3
T

11 3 4
T

12 4
v v
v v=
+

+ + +to t  (49)

and the second critic NN be provided by

 –
( )

[ ( ) ]W a W Q x u R u d R d
1

2 2

4
T

4
2

4
4
T

2 2 3
T

21 3 4
T

22 4
v v
v v=
+

+ + +to t  (50)

where ( )f gu kd3 1 3 4#v z= + +  and ( )f gu kd4 2 3 4#v z= + + . Let 

the first actor NN (first player) be tuned as

 
– – –

–

( ) ( ) ( )

( )

W F W F W g x R R R g x

Wm W D x Wm W

4
1

4
1

– –
3 3 2 3 1 3

T
1 1 11

T
21 11

1 T

1
T

3 2
T

2 1 3 1
T

d

d

a v z

z

=to t r t

t t r t t

$

.
 (51)

and the second actor (second player) NN be tuned as

 
– – –

–

( ) ( )

( )

W F W F W k x R R R k x

W m W D x W m W

4
1

4
1

– –
4 4 4 4 4 2 2 22 12

2 4 1 2 4 2 2

T T T

T T T

1
223 d

d

a v z

z

=t
o t r t

t t r t t

^ h$
.

 (52)

where ( ) ( ) ( ) ( ) ( ),D x x g x R g x x
–

1 1 11
1 T

1
T

d d z zr

           ( ) ( ) ( )D x x kR k x
–

2 2 22
1 T

2
T

d d z zr ,

( )
m

1
1

3 3
2

3

T
 
v v
v

+
, 

( )
m

1
2

4 4
2

3

T
 
v v
v

+
 and F

1
 > 0, F

2
 < 0,

F
3
 > 0, F

4
 > 0 are tuning parameters. Also assume Q

1
(x) > 0 

and Q
2
(x) > 0. Then there exists an N0 such that, for the number 

of NN hidden layer units N > N
0
 the closed-loop system state, 

the critic NN errors W̃
1
,W̃

2
, and the actor NN errors W̃

3
,W̃

4
 are 

bounded. Moreover, V̂
1
(x) and V̂

2
(x) converge to the solution 

to the coupled HJ equations.
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It is important to note that this algorithm learns the solu-

tion to the coupled HJ equations (42) and the optimal 

policies (44) without ever in fact solving either the coupled 

HJ equations or the Lyapunov equations. In the LQR case, 

it learns the solution to the coupled Riccati equations online.

5. Simulations

5.1  Two player non-linear system

In 1954, Colonel O.G. Haywood asserted17 the little known 

fact that von Neumann’s minorant solution to two-player 

zero-sum games is identical to the U.S. Military decision 

doctrine known as the ‘Estimate of the Situation’. Today, 

two-player zero-sum games are viewed as essential tools for 

military commanders to determine the optimal solution in 

an uncertain wartime situation.18 Two-player non-zero-sum 

games are equally important when developing strategies 

for civilian–military cooperation in peacetime operations.19 

These examples illustrate how two-player system models 

are relevant to military operations, even when their usage 

involves teams or groups rather than just individual agents.

Consider the following affine in control, two-player (u and 

d) non-linear system, with a quadratic cost constructed as20,21

 ẋ = f(x) + g(x)u + k(x)d, x R2

where

 – –
( )

. . (cos( ) . (sin( ) )

( )
cos( )

, ( )
sin( )

.

)
f x

x

x x x x x x

g x
x

k x
x

0 5 0 25 2 0 25 4 2

0

2 2

0

4 2

2

 

2

2 1 2 1
2

2 1
2 2

1 1
2

=
+ + + +

=
+

=
+

=
= =

G
G G

Select Q
1
 = 2Q

2
, R

11
 = 2R

22
 and R

12
 = 2R

21
, where Q

1
, R

22
 

and R
21

 are identity matrices.

The optimal value function for the first critic (player 1) 

is ( )V x x x
2
1

1
*

1
2

2
2

= +  and for the second critic (player 2) is

( )V x x x
4
1

2
1

2
*

1
2

2
2

= + .

The optimal control signal for the first player is u*(x) = 

–(cos(2x
1
) + 2)x

2
 and the optimal control signal for the 

second player is d *(x) = –(sin(4x
1
2) + 2)x

2
.

One selects the NN vector activation function for the 

critics as ( ) ( ) [x x x x x x ]   1 2 1
2

1 2 2
2

 { {= . Figure 1 shows 

Figure 1. Convergence of the critic parameters for the first 
player

Figure 2. Convergence of the critic parameters for the second 
player

Figure 3. Evolution of the system states
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the critic parameters for the first player, denoted by 

[ ]W W W W1 1 2 3
T

c c c=  by using the proposed game algo-

rithm. After convergence at about 150 s one has Ŵ
1
(tf) = 

[0.5015  0.0007  1.0001]T.

Figure 2 shows the critic parameters, denoted by 

[ ]W W W W2 2 1 2 2 2 3
T

c c c=  by using the proposed game algo-

rithm. After convergence at about 150 s one has Ŵ
2
(tf) = 

[0.2514  0.0006  0.5001]T.

The actor parameters for the first player after 150 s con-

verge to the values of Ŵ
3
(tf) = [0.5015  0.0007  1.0001]T and 

the actor parameters for the second player after 150 s 

converge to the values of Ŵ
4
(tf) = [0.2514  0.0006  0.5001]T 

Therefore the actor NN for the first player

 –( )
cos( )

u x R
x

x

x x

x

0

2 2

2

0

0

2

0.5015

0.0007

1.0001

–

2
1

11
1

T 1

2 1

2

T

 

=
+

 = > >G H H
also converged to the optimal control, and the actor NN for 

the second player

Figure 4. Optimal value function for player 1

Figure 5. 3D plot of the approximation error for the value 
function of player 1.

Figure 6. 3D plot of the approximation error for the control 
of player 1.

Figure 7. 3D plot of the approximation error for the control 
of player 2.
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 –( )
sin( )

d x R
x

x

x x

x

0

4 2

2

0

0

2

0.2514

0.0006

0.5001

–

2
1

22
1

1
2

T 1

2 1

2

T

=
+

 = > >G H H
also converged to the optimal one.

The evolution of the system states is presented in Figure 3, 

where one can see how the PE influences the states. 

Figure 4 shows the optimal value function for player 1 

(similarly for player 2). 

Figure 5 shows the 3D plot of the difference between the 

approximated value function for player 1 and the optimal one. 

Player 2 has a similar error. These errors are close to zero. 

Good approximations of the actual value functions are 

being evolved. Figure 6 shows the 3D plot of the difference 

between the approximated control for the first player, by 

using the online algorithm, and the optimal one. This error 

is close to zero. Same for the second player in Figure 7.
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